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Sound radiation from a cylindrical duct. Part 1. 
Ray structure of the duct modes and of the 

external field 
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Department of Applied Mathematics and Theoretical Physics, University of Cambridge, 

Silver Street, Cambridge CB3 9EW, UK 

(Received 18 April 1994 and in revised form 18 July 1994) 

This paper determines the ray structure of a spinning acoustic mode propagating 
inside a semi-infinite circular cylindrical duct, and thereby determines the ray structure 
of the field radiated from the end of the duct. Inside the duct, but outside of a caustic 
cylindrical surface, the rays are piecewise linear helices; on striking the rim of the 
end-face of the duct, these rays produce ‘Keller cones’ of diffracted rays. The cones 
determine the structure of the radiated field: for example, no rays penetrate two 
cone-shaped far-field quiet zones centred on the duct axis; two rays pass through 
each point in a forward loud zone; and one ray passes through each point in a 
rearward loud zone. The two rays through each point in the forward loud zone 
interfere to produce an oscillatory directivity pattern. One quarter of the rays on each 
cone point back inside the duct and produce the reflected field. Thus the rim of the 
end-face of the duct acts as a ‘ring source’, in which the radiated and reflected fields 
have their origin. Every propagating duct mode determines a polar angle and an 
azimuthal angle; these are taken as parameters specifying the mode and are used to 
calculate the positions and angles of all the rays. The mathematical method on which 
the paper is based is Debye’s approximation for the Bessel function which appears 
in the expression for the duct modes; the approximation shows also that the duct 
contains a region of smooth helical rays on which the field consists of inhomogeneous 
waves: this region is the inner cylinder, lying inside the annulus of piecewise linear 
helical rays. The results of the paper are very promising for the application of Keller’s 
geometrical theory of diffraction to detailed calculations of the sound radiated from 
aeroengine ducts. An alternative description of the field, using Cargill’s meridional 
rays, is summarized. 

1. Introduction 
A topic of long-standing importance in research work on the noise produced by 

turbofan aeroengines is the effect of the duct on the sound radiated by the fan. Tyler 
& Sofrin (1962) set the scene for a large amount of published work in this area 
in the 1960’s and 1970’s, and the subject is now prominent again in noise control 
work on short-duct multi-blade turbofans. For example, a recent NASA reference 
publication devotes considerable space to the duct acoustics of aeroengines (Eversman 
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1991), and the 15th AIAA aeroacoustics conference (Longbeach, California, 1993) 
included sessions entitled ‘Ducted fan noise’ and ‘Turbomachinery duct propagation 
and radiation’. 

One of the most important effects of an aeroengine duct is that the inlet diffracts 
the spinning acoustic field propagating forwards inside the duct from the fan; much 
attention has therefore been paid to the model problem of determining the sound 
radiated from the end of a semi-infinite hard cylindrical duct of circular cross-section. 
An exact solution of this problem is available by the Wiener-Hopf technique (Levine 
& Schwinger 1948; Weinstein 1949, 1969; Lansing 1970; Homicz & Lordi 1975); 
but because of its complexity, simpler approximate methods have been found of 
great value by aeroacoustic engineers, and the Kirchhoff approximation, in which an 
estimated acoustic source strength at the duct face is inserted in a radiation integral, 
has been more widely used in practice (Tyler & Sofrin 1962; Morfey 1969; Goldstein 
1976, pp. 210-212; Rice 1978; Boyd, Kempton & Morfey 1984; A. J. Kempton, A. B. 
Parry & G. P. Howell 1992, private communication). Unfortunately, the Kirchhoff 
approximation is accurate only for angles which are not too far from the ‘main 
beam’, so that it cannot be relied on for sideways radiation and fails in the rear 
arc. A natural question, therefore, is whether a method exists which overcomes the 
limitations of Kirchhoff’s method, but does not require the machinery of Wiener-Hopf 
factorizations and contour integrals. 

There is such a method: it is Keller’s geometrical theory of diffraction (Keller 
1958, 1962). Moreover, the conditions for its validity are easily satisfied in modern 
turbofans, because the large number of fan blades gives rise to sound of wavelength 
small compared with the duct radius. Not only does Keller’s theory give the sideways 
and rearward radiation, it deals easily with bell-mouth and scarf inlets, and with 
arbitrary impedance of the noise-control lining in the duct wall; it is therefore ideal 
for noise-shielding work (Broadbent 1977; Jones 1977). 

Despite the advantages of Keller’s method, and its widespread use in many problems 
of acoustics and electromagnetism, its application to duct acoustics has so far been 
limited to the calculation of radiation from two-dimensional parallel-plate ducts (e.g. 
Yee, Felsen & Keller 1968; Boyd et al. 1984, equation 4 and appendix l), and from 
two-dimensional sectoral-horn ducts (Kinber 1962). The reason for the neglect of 
such a powerful method for analysing the acoustics of cylindrical ducts appears to 
be that a complete three-dimensional ray description of cylindrical duct modes is not 
available in the literature. Since acoustic fields in ducts are nearly always expressed as 
sums of modes, the decomposition of each mode into its constituent rays is essential 
if Keller’s method is to be added to the repertoire of existing computer codes useful 
for duct acoustics. Accordingly, the aim of this paper is to show how an arbitrary 
duct mode may be written as a field of rays, and to deduce the structure of the 
sound field radiated from the end of the duct; a later paper will use the diffraction 
coefficient obtained from the exact solution of an appropriate ‘canonical problem’ to 
give quantitative detail of the far-field directivity pattern. Although the paper takes 
as its starting point an explicit expression for the mode, this is not essential : the paper 
could equally well start with the ‘quantum conditions’ of Keller & Rubinow (1960). 

Previous investigators have determined some aspects of the ray structure of duct 
modes; in particular, the ‘mode ray angle’ has been recognised as a fundamental quan- 
tity (Weinstein 1949, equation 65, and 1969, equation 15.03; Rice 1978, equations 4 
and 9; Rice, Heidmann & Sofrin 1979; Kempton et al. 1992, private communication). 
But two angles, not one, are needed to determine the direction of the rays striking the 
wall of the duct, because as well as being tilted to the duct axis the rays lie in planes 
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tilted at an angle to meridional planes. The two angles are noted briefly by Weinstein 
(1969, problems 3.13 and 4.18) and incorporated into a systematic theory by Rice et 
al. (1979); the present paper calculates them analytically and thereby builds up a 
complete three-dimensional ray picture, inside the duct and out. Other ray analyses 
of cylindrical duct problems have been given (e.g. Felsen & Yee 1968; Felsen 1984), 
but they emphasize localized sources in the duct rather than ray decomposition of 
individual modes. Weinstein (1969, pp. 166170) obtained the ‘edge-waves’ from a 
cylindrical duct in which the circumferential order of the incident mode is low; but 
he proceeded by asymptotic analysis of the complicated Wiener-Hopf solution, not 
by direct use of ray theory. 

The reader may find it helpful to inspect the diagrams before proceeding further, as 
they summarize the geometrical results. The next section presents a detailed analysis 
of the duct modes and of the ray structure of the radiated field, and the final section 
contains a discussion of results obtainable from Keller’s theory without excessive 
calculation. 

2. Analysis and geometry 

The main result of this paper is that a propagating acoustic mode 
2.1. Notation 

= e - W - m 4 - k x x ) j  (k  
m r r )  

in a cylindrical duct of circular cross-section has the helical ray structure shown in 
figure l (a-d) ,  and produces cones of rays in the external field when it strikes the end 
of the duct (figure l a b ) .  Here p is the pressure, t the time, and ( r , + , x )  a system 
of cylindrical coordinates aligned with the duct axis; the positive x-direction is out 
of the duct and will be called forwards. The parameters specifying the mode are its 
frequency a, circumferential order m, axial wavenumber k,, and radial wavenumber 
k,. For the moment these will be assumed real and positive, so that the mode is 
spinning in the direction of increasing 4 and propagating forwards; m is an integer, 
to ensure periodicity of 2.n in 4. 

The ray structure in the duct and external field will now be deduced from (2.1) 
by simple algebraic manipulation, and the field on all the rays in the duct will be 
obtained in ‘free-space’ form; calculation of the field on external rays is deferred to 
a later paper. All angles and lengths will be calculated as functions of the mode 
parameters. For definiteness, the duct wall at radius r = a is assumed hard, so that 
Jk(k,a) = 0, i.e. 

where s is the radial order of the mode and jAs is the sth zero of JL. Thus k, can 
take only a discrete set of values labelled by (m, s ) ,  and may be written k!”’),. Since 
the pressure field satisfies the wave equation, k, satisfies kz = k2 - k:, where k = w / c  
is the free-space wavenumber corresponding to frequency w ,  and c is the speed of 
sound; the mode propagates (i.e. is ‘cut on’) if k, is real, and evanesces (i.e. is ‘cut off’) 
if k, is imaginary. In what follows, it is assumed that ka is fixed, and that the mode 
is cut on; hence k, < k,  and m and s are restricted by jks < ka, so that only finitely 
many modes are cut on for a given frequency. Hence for given ka there is a maximum 
cut-on circumferential order m, and for given ka and m there is a maximum cut-on 
radial order, say s = sm = sm(ka). The structure of the non-spinning modes, i.e. modes 

k,a = j;, ( s  = 1,2, ...) , (2.2) 
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FIGURE 1. For caption see facing page. 
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for which m = 0, may be obtained in an obvious way from the results which follow, 
but will not be given explicitly. 

Since rather a large number of angles and radii will be introduced, it is convenient 
to present here, for future reference, a systematic set of definitions; figures 1-3 show 
their geometrical meaning. The starting point is the relation 

m < j;, < ka , (2.3) 

in which the first inequality is a property of Bessel functions, and the second inequality 
is the cut-on condition just given. Hence angles e m ,  e m s ,  4 m s  and radii rm, rms may be 
defined by 

and 

then 

and 

The relations 

and definitions 

i.e. 

m 
sin (bms = - m & sine, = - sine,, = 

ka ’ ka ’ j& 

rm = a sin 9, , rms = asin 4ms ; 

sin 0, = sin Om, sin 4ms , 
rm = rms sin Om, , 

rm < rms < a . 

, ~ C O S ~ , ~  = 
m 

k sin Om, = - 
rms 

COSW, = sin0, , COSP,, = sin4,, , 
will be found useful; they give 

(kx, k,) = (k cos 0,, , k sin Oms) = ’-) rms 

and 

(2.4~-c) 

(2.5a, b )  

(2.6) 

(2.7) 

(2.8) 

(2.9a, b )  

(2.10a, b )  

(2.11~2, b )  

(2.12a, b )  

(2.13) 

(2.14) 

FIGURE 1. Ray geometry: side-views and end-views. (a), ( b )  Piecewise linear helix and its Keller 
cone. The lines on the cone show the directions of incident rays from the piecewise linear helices of 
other radial orders at fixed circumferential order. (c ) ,  (d) Smooth helical ray in the inner cylinder. 
( e ) ,  (f) Cylindrical surfaces at the caustic radii rml,rm2, ..., rms, and at the sonic radius I,. (g), ( h )  
Non-spinning mode, m = 0. Each cone is flattened into a disc of infinite radius, so that all the rays 
lie in meridional planes. (i), ( j )  Two-dimensional parallel-plate duct: similar to (g), (h), but not to 
(a)-(d). 
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FIGURE 2. For caption see facing page, 
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Relation (2.10~) will often be used to interchange ‘k and an angle’ with ‘m and a 
radius’. 

The above quantities are named as follows: Oms and #ms are the mode angles, the 
former being the polar angle and the latter the azimuthal angle; 8, is the quiet-zone 
angle, tp, the cone angle, pms the Debye angle at the duct wall, rm the sonic radius, 
and rms the caustic radius. The region 0 6 r < rms is the inner cylinder, and its surface 
r = rms is the caustic cylindrical surface (or ‘caustic surface’, or ‘caustic’); the region 
r,, < r < a is the outer annulus (or ‘annulus’); the region 0 6 r < a is the duct; 
and r = a is the duct wall (or ‘wall’). Figure 2(a,b) illustrates these quantities. Earlier 
investigators have called Om, the mode ray angle (see 91). 

The Bessel function in (2.14) oscillates in the annulus r > r,, and decays in the 
inner cylinder r < rms. Hence it is natural to write Jm in the annulus in terms of 
the two Hankel functions H f )  and Hi2),  and regard the field there as a superposition 
of two propagating waves; their sum is a field whose variation with r, but not x or 
#, is that of a standing wave. Within the inner cylinder there is no advantage in 
decomposing the Bessel function: the exponential decay for r c rms represents a single 
inhomogeneous wave. The field in these two regions will now be analysed separately. 

2.2. Outer annulus 
On putting J m  = i(HL1) + the field (2.14) becomes 

P =  ; ( P + + P - )  9 

where 

P+ = e-i(ot-m+kxcosBm,) ~ ( 1 )  (5) ’ 
and 

P-  = e-i(ot-m+kx cos Oms)  ~ ( 2 )  ( z )  . 
Hence 

where 

Y *  = wt  - m# - kxcos 8,, f { m ( - p> - a> , 
r,, 

and 

2 2 1 j 2  P = ( r  - r m s )  , rms cosp = - , 
r 

P 
tanp = - 

rms 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20a-c) 

FIGURE 2. Definitions of lengths and angles. (a),  ( b )  Projections of rays and cones: HSA is 
the last segment of a piecewise linear helix which strikes the rim of the duct at A ;  the segment 
continues as A T .  In three dimensions, the lines H S A T ,  M A B ,  AC,  AD and AE are all at the 
cone angle yrn to the rim-tangent A Z ,  and the line AT is at the mode polar angle Oms to A X ;  
the line HSAT points out of the page in both figures, but the following angles refer to the pro- 
jectionsAon the page: coFe angle y m  = BAZ = CAZ = DAZ = EAZ = M b A ;  quiet-zone angle 
8, = BAY = CAO = DAX = EAW = M A O ;  mode azimuthal angle q5rns = SAO = T A Y ;  Debye 
angle at the wall, Prns = S 6 A .  (c ) ,  ( d ) ,  ( e )  Offset (or ‘annular’) polar coordinates (7, q5+) and (7,q5-), 
defined for P outside a circle of radius rms. 
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see figure 2(a-4. In the definition (2.20) of 7, the argument of the square root is 
positive, because Y > rms in the outer annulus. The expressions for p f  and p- in 
(2.18) use the Debye approximation to the Bessel functions for ‘argument greater 
than order’ (Abramowitz & Stegun 1965, $9.3.3). Although the theory on which the 
approximation is based requires m to be ‘large’, a numerical check shows that the 
approximation remains accurate not merely down to quite small m but in fact down 
to, and including, m = 0. High accuracy at such m is perhaps best regarded as 
numerical good fortune, since in the absence of realistic error bounds it arises from 
the numerical evaluation of ‘order one’ quantities, not from the asymptotic theory 
itself; this interpretation in no way limits the physical meaning of the approximation, 
which is that the acoustic field has a ray structure in all regions of space where 
the Bessel function is well approximated by Debye’s formula, whether or not these 
regions of good agreement have been determined theoretically. Figure 5 in the 
Appendix compares the exact values of J ,  and Y, with their Debye approximations 
for m = 0,1,4,24. The Appendix also indicates the minor modification needed to 
the usual form of Debye’s approximations to enable them to apply for m = 0; they 
then become identical to the large-argument, fixed-order ‘Hankel type’ asymptotic 
approximations to the Bessel functions of order m = 0. For all other values of m, the 
Debye type of asymptotic approximation is quite different from the Hankel type, and 
numerically is greatly superior to it. Figure 5 shows that the Debye approximation 
fails only in the ‘quarter-wave’ on either side of the ‘caustic value’, i.e. the value 
at which the argument equals the order; since this remark holds good for all m, 
Debye’s formula may for practical purposes be regarded not so much as a ‘large m’ 
approximation, but rather an approximation which fails only in the ‘quarter-wave’ on 
either side of the caustic, for any m. As Debye’s approximation is the fundamental 
mathematical tool used in this paper, these remarks are important in determining the 
paper’s scope; for example, rms has to be very close indeed to a for the ray theory 
description in the annulus to break down. Therefore the theory applies even for 
modes which are only just cut on. The author believes that the power of Debye’s 
approximation for, say, m = 0,1, is not widely appreciated. 

Expression (2.18) for p’ is the first term of an asymptotic ray series, in which the 
phase Y f satisfies the eikonal equation and higher-order terms satisfy the transport 
equations. In writing down this ray series, it is essential to scale m with k ,  so that there 
is a single large parameter, which may be taken to be k .  Terms beyond the first in the 
series may be found either by solving the transport equations, or, more directly, by 
using the known expressions for the higher-order terms in Debye’s asymptotic series 
for the Bessel functions. 

The phase Yk defined in (2.19) represents a plane wave on every tangent plane to 
the caustic cylindrical surface (figure 3), because q5 f p is constant on the (negative, 
positive) half-planes comprising a tangent plane (figures 2c-e and 3a), and because 
(x, T )  are ordinary Cartesian coordinates on the tangent plane (except that T is positive 
by definition). Note that the ‘Debye angle’ p depends on r ;  hence the constancy of 
4 p on half-planes tangent to the particular cylinder r = r,, is a non-trivial 
property of Yk which reflects the fact that Debye’s approximation is intimately 
related to a particular ray structure, namely a family of straight lines expressed in 
polar coordinates. This has been noted before (e.g. Keller 1958, equations 29, 31; 
Kinber 1962, equation 4; Kravtsov 1967, equation 25). 

In order to describe the field in detail on tangent planes to the caustic cylindrical 
surface, some care is needed with a sign convention, because two tangent planes 
pass through each point in the annulus, and any one tangent plane consists of two 
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(4 
FIGURE 3. Tangent planes to the caustic cylindrical surface. (a) Constituent half-planes, and the ray 

direction khS. ( b )  Reflection at the duct wall. (c) A ray tube. 

half-planes, one from each of two families. To avoid ambiguity, the variable P will be 
used to form two systems of annular (or ‘offset’) polar coordinates (P,4+) and (7,4-), 
as shown in figure 2(c-e). Thus 4+ is constant on one half of a tangent plane, to be 
called the positive half-plane; as a point moves away from the cylinder at fixed 4+, 
so 4 increases, i.e. the direction of rotation about the duct axis is positive. Similarly, 
4- is constant on the negative half-plane; as a point moves away at fixed 4-, so 4 
decreases, i.e. the point rotates in the negative direction about the duct axis. Thus 
$+ and 4- are positively and negatively offset azimuthal angles; (P, $+) and (i, 4-) 
are positively and negatively offset polar coordinates. One reason for adopting these 
coordinates is that the relation 

(2.21) 
7c 4* = 4 f (z - 8) 

then holds, modulo 27c, for any point ( r , 4 )  in the annulus; thus the two tangent 
half-planes through a given point can be described analytically without ambiguity. 
Conversely, the values of ++ and 4- on the two half-planes comprising a single 
tangent plane satisfy ++ - 4- = n: (mod 2n), and when r -+ rms so P -+ 0, p -+ 0, 
and +* -+ 4 +_ n/2. At the duct wall r = a, the values are P = a sin flms = a cos qLS, 
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P = Pms, and & = 4 & 4ms. Hence at the duct wall, the tangent plane is ‘tilted’ at an 
angle 4ms to the meridional plane. The offset radius 7, positive by definition, measures 
distance from either of the two straight lines in which the two tangent planes through 
a point in the annulus touch the inner cylinder; (7,x) are rectangular coordinates for 
either of the two half-planes comprising a tangent plane. Since 7, 4+, 4- and B are 
defined with respect to a particular caustic cylindrical surface, their values depend 
not only on r and 4 but also on m and s through rms (see (2.20), (2.21)); but m and s 
will not be incorporated into the notation. 

In the above variables, the phase (2.19) becomes 

Y*  = w t  - k& . P - m+* & (rn + ;)in , (2.22) 

where 

k,$ = k(cos Oms , f sin Oms) , (2.23) 

P = (x,?) , (2.24) 

and (2.10~) has been used. Since lkzsl = k = o / c ,  the phase Y *  represents waves 
travelling in straight lines at the speed of sound on half-planes of fixed +*; cf. the 
‘free-space waves’ of Baxter & Morfey (1986, appendix A) and the numerical results 
in Rice et al. (1979, appendix A and table Al). Note that kzS points in a single 
direction Om, to the duct axis on a whole tangent plane: different values labelled by & 
are needed because an increase in 7 gives opposite directions on the two half-planes 
(figure 34). The ray structure is not that of spiral waves in a narrow annulus described 
by Tyler & Sofrin (1962, figure 9b,c), Morfey, Sharland & Yeow (1968, figure 10.9a), 
and Wright (1972, figure 3b). 

The complete field of rays on a tangent plane is shown in figure 3b. Two neigh- 
bouring tangent planes determine the shape of a ray tube; the tube drawn in figure 
3c has a fixed width in the axial direction, because the rays within a tangent plane 
are parallel. In the circumferential direction, the width of the tube is proportional 
to 7, which implies that the amplitude of the field in the ray tube must vary as 
7-1’2. The fact that p+ and p - ,  as given by (2.18), do indeed have this variation of 
amplitude provides a check of the ray theory just developed; and the singularity as 
7 --+ 0 confirms the presence of the caustic surface at r = rms. A further check is that a 
caustic surface retards by $T the phase on each ray passing through it. Now the terms 
w t  - k& . F in Y * are consistent with no phase jump, by the remark after (2.24) that 
k$ points in a single direction on the whole tangent plane. Hence the jump arises 
from the terms -m4* (m + $)in, and since 4+ - 4- = 7t for the two half-planes 
comprising a tangent plane, the phase change in (2.18) is - (Y+ - Y - )  = -1, 2 9 as 
expected. In accordance with figure 5 in the Appendix, the ray representation (2.18) 
in the outer annulus will break down as an approximation to the original field (2.1) 
only in the thin annulus comprising the quarter-wave next to the caustic. 

The two tangent planes containing a straight line in the duct wall are shown in 
figure 3b. Each ray on one tangent plane joins another ray on the next; by symmetry, 
the composite ray so formed satisfies the ‘law of reflection’ at the wall: i.e. the 
incident and reflected rays lie in the same plane and make equal angles with the wall. 
On following a ray through successive tangent planes and reflections, the resulting 
composite ray is a piecewise linear helix, in which each segment is at a polar angle Oms 
to the duct axis and lies in a plane tilted by an azimuthal angle 4ms to the meridional 
plane through the reflection point on the duct wall; thus on each reflection, the 
azimuthal angle of the ray increases by 7t - 24mS, i.e. ZP,,. This establishes the 
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ray structure in figure l a  and gives the angles in terms of the parameters specifying 
the mode. The piecewise linear helices are not invariant to translations parallel to 
the duct axis; i.e. 2Pms does not divide any integer multiple of 271, and successive 
reflection points do not return to an earlier azimuthal angle. The field in the annulus 
is that of a whispering-gallery mode (Brekhovskikh 1980, pp. 419421 ; Weinstein 
1969, problem 3.13), though the term might be considered inappropriate for the field 
inside an aeroengine duct. 

2.3. Inner cylinder 
When r < rms, application of the Debye approximation for ‘argument less than order’ 
(Abramowitz & Stegun 1965, 99.3.2) to the Bessel function in (2.14) gives 

where 

Y =wt-m~-kxcost l , ,  , 

(2.25) 

(2.26) 

(2.27) 
and now 

7 = (r2 ms - r2)1/2 . (2.28) 
Note that the argument of the square root is positive, because r < rms in the inner 
cylinder; compare the definition (2.20) of 7 for r > rms, i.e. in the outer annulus. In 
all cases, 7 is positive by definition. The notation 

(2.29) 

(2.30) 

(2.31a, b )  

(2.32a, b )  

IV@12 - IVY 1’ = -k2 , V@. VY = 0, (2.33~1, b )  
which form the basis of what follows. The reason for defining a third radial coordinate 
i, in addition to r and 7, is that i occurs naturally in equations (2.31)-(2.34) describing 
the wave motion in the inner cylinder. As r varies from 0 to rms, so i varies from 0 to 
co; when r + 0, so @ + --GO; and when r + rms from below, @ becomes proportional 
to -m(r,, - 

Equations (2.33) express the fact that the field p given by (2.25) is locally an 
inhomogeneous plane wave (Brekhovskikh 1980, pp. 3-5): the wave propagates in the 
direction -VY with phase speed o/lVY 1, always less than c by (2.33a), and decays 
exponentially in the transverse direction -V@ at a gradient proportional to e’IV@I, 
i.e. with logarithmic decrement IV@jl; the other term 7-’i2 in (2.25) is slowly varying. 
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A noteworthy feature of a field of inhomogeneous waves of the type (2.25) is that 
@ and Y can be arbitrary functions of position, so long as they satisfy (2.33) with 
a constant value of k; recall that k = o / c ,  and the speed of sound c is assumed 
uniform. Thus the phase speed w/lVYyI depends on position; in effect, the rays are 
refracted and can be arbitrary curves. This explains why pressure fields satisfying the 
wave equation with uniform sound speed can travel on rays which are not straight 
lines. By (2.33a), the greater the amount by which the phase speed falls short of c, 
the greater the rate of exponential decay in the transverse direction. If (2.31)-(2.32) 
were to be used as the basis for an asymptotic ray series, m would be scaled with 
k, as noted in 92.2; it would also be customary to scale @ and Y with k so that k 
appears explicitly in the phase term. 

A systematic theory has been developed for ray-tracing of inhomogeneous waves 
(e.g. Choudhary & Felsen 1974), and the corresponding fields have been related to 
complex rays (Keller 1958; Kravtsov 1967; Wang & Deschamps 1974). But this theory 
is not needed here, because the direction of VY, from (2.27) and (2.31b), implies at 
once that the rays are helices; on a cylindrical surface of radius r ,  the helical angle 
0:; and propagation speed ck! are given by 

2 -112 t a n ~ c i  = rn , c;!=c{l+(;) } 
kr cos 8,,, 

(2.34a, b )  

The angle and phase speed tend to OmF and c as r -+ r,, from below, because 
m/(krm5) = sinO,,, and i ---f co. Hence the smooth helical rays in the inner cylinder 
match smoothly onto the piecewise linear rays in the outer annulus: both direction 
and phase speed are continuous as the caustic surface r = r,, is crossed. But the 
breakdown of the Debye approximation (2.25) near this surface must be remembered; 
figure 5 in the Appendix shows that the excluded annulus just inside the surface r = Y,, 
has approximately the same thickness as the excluded annulus just outside the surface; 
hence the total thickness, in the ray direction, of the excluded annulus surrounding 
r = rm, is that of half a wave. 

The ray angle 0:; increases as r decreases, and the axial distance travelled by a ray 
in one revolution about the axis is (2nkr2/m)cos&,. Hence the propagation of the 
field on rays does not correspond to a helical motion of a solid cylinder; for example, 
the rays near the duct axis are almost circumferential in direction, as noted by Rice 
et al. (1979, appendix A). 

2.4. The ring source and the Keller cones 
Each point on the rim of the end-face of the duct is struck by a piecewise linear ray 
from the outer annulus inside the duct, and becomes the vertex of a Keller cone of 
diffracted rays (figure la,b); the cone is obtained by extending the incident ray in a 
straight line beyond its point of incidence on the rim, and rotating the extended part 
about the tangent to the rim (Keller 1962, figure la). A surprising fact is that the 
cone angle, i.e. the ‘Keller angle’ between the tangent and any ray on the cone, does 
not depend on the radial order s: by trigonometry from figure 2(a,b), its cosine is 
sin Om, sin &,, i.e. m/ka,  so that the angle may be denoted y,. Hence 

(2.35) 
m 

cos ym = sin Om, sin 4,, = - 
ka’ 

in accord with (2.6) and (2.12~). The relative orientations of the directions (em,, g5ms) on 
the cone are shown in figure l(a,b): the orientations are determined by intersections of 
the cone with planes tilted at angles &I,  #m2, ..., 4msm to the meridional plane through 
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the vertex of cone. In modelling the acoustics of aeroengines, it is often convenient 
to consider together all the propagating modes corresponding to a given frequency o 
and circumferential order m; the ‘swinging around’ of their ray directions on a cone 
of fixed angle (figure la,b), and hence the general similarity of the radiation patterns 
for different s at fixed m, is thus of great interest for the ‘source modelling’ part of 
aeroengine noise research. 

A different method of obtaining the cone angle is as follows. On the rim of the 
duct the phase varies as ot - m$, corresponding to a phase Mach number ao/mc, i.e. 
kn/m. Now a ray can only be emitted in, or received from, directions for which the 
resolved component of phase velocity is exactly sonic; hence the cosine of the cone 
angle must equal m/ka.  This argument explains why the cone angle does not depend 
on the radial order s; equally, it explains the relation (2.35) between the mode angles 

A section of the cone by a plane through the end face of the duct (figure 2a) shows 
that the cone touches the sonic cylinder of radius r, defined by (2 .4~)  and (2.5~).  This 
too may be explained by a phase argument: the circumferential phase Mach number 
at radius rm is a fraction r m / a  of its value k a / m  at the rim, i.e. the circumferential 
phase Mach number is 1, by (2.9~);  hence the tangency of the cone and sonic cylinder 
is consistent with a wave travelling on the cone, away from the vertex, at the speed 
of sound. The plane section in figure 2(a) also shows the tangency of the incident ray 
and caustic surface r = rms;  the ray is of course tilted at an angle Oms to the plane of 
the figure. 

One quarter of the rays on the cone, forming a sector of 90” about the tangent to 
the rim, point back into the duct and generate the reflected field. The 90” spread of 
angles distributes the reflected field among many modes, and is a factor in determining 
the coupling coefficients, which quantify the conversion of one mode into another 
on reflection. The division of the rays into those pointing out of the duct and those 
pointing back into it corresponds to the ‘energy budget’ relation which equates the 
incident intensity to the sum of transmitted and reflected intensities. Rays pointing 
back into the duct are no different in kind from those pointing out, although they 
reflect off the walls of the duct to form piecewise linear helices, instead of propagating 
unimpeded in straight lines to the far field. Hence the reflected field is similar in 
many respects to the rearward-radiated field. 

A section of the cone by a plane through its vertex and tangential to the duct wall 
(figure 2b) shows that the most forward-pointing ray on the cone makes an angle 
71/2 - y,, i.e. 8,, with the forward direction Ox; and the most rearward-pointing ray 
makes an angle 0, with the backward direction. If the vertex of the cone is given every 
position on the rim, the resulting family of cones envelops two surfaces, which in the 
far field tend to cones of angle 0, centred on the forward and backward directions 
of the duct axis. No ray can reach inside these two cones, which thus bound ‘quiet 
zones’, in which the field is exponentially small; therefore Om is the ‘quiet-zone angle’. 
Outside of these two cones, each point in the far field is struck by at least one ray; 
the region outside the two cones is therefore the ‘loud zone’. A remarkable feature 
of this division of space into quiet and loud zones is its fore-and-aft symmetry: in a 
problem with high-frequency sound propagating out of a duct, the structure of the 
field in the rear arc might not be expected to show any similarity to the structure in 
the forward direction. The symmetry would surely be quite mysterious without an 
explanation based on the Keller cones. 

The far-field loud zone may be subdivided into the ‘forward loud zone’, ahead of the 
duct exit plane, and the ‘backward loud zone’, behind it. In the forward loud zone, two 

Oms and 4 , s .  
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rays pass through each point, from different points on the rim, and the interference 
of the field on the two families of rays will produce an oscillatory directivity pattern. 
In the backward loud zone, only one direct ray passes through each point, and the 
directivity pattern will not display rapid oscillations. This structure is precisely that 
which appears in a set of graphs computed by Homicz & Lordi (1975, figure 2) from 
the Wiener-Hopf solution for m = 40, s = 3 and ka = 55,70,85. Moreover, at the 
quiet-zone angles f?40 = sin-.’ (40/ka), namely 46.7”, 34.9”, 28.0°, the field in these 
graphs decays very sharply to zero, both in the fore and aft directions. The graphs 
therefore provide a striking confirmation of the ray theory. 

An appealing physical description of the effect of the end of the duct is that it 
acts as a ‘ring source’ (cf. Prentice 1992); in optical terminology, it ‘glows’ under 
the infixnce of its irradiation from inside the duct. The glow is of course highly 
directional, and the division of the far field into different regions corresponds to the 
number of ‘bright spots’ seen on the rim by the observer. 

The cones described above consist of singly diffracted rays, since they are produced 
by the incident field striking the rim of the duct. Some of these rays, namely those 
lying in the duct exit plane and pointing inwards, strike the rim again, to produce 
further cones; these are the cones of doubly diffracted rays. The process continues 
indefinitely, to give cones of the multiply diffracted rays (Keller 1958). All these cones 
have the same cone angle, because a ray from one part of the rim to another has the 
same angle to the tangent at each end (figure 2a). Hence inclusion of any number 
of these rays does not alter the number of points (0, 1, or 2) on the rim which send 
rays to any given observation point: each point simply contributes an infinite series. 
The greater the value of ka, the more rapidly the higher terms in the series decay: 
in many problems, the first term in the series will give ample accuracy for most 
directions. Such series occur in the asymptotic analysis of Wiener-Hopf solutions, 
for example in the asymptotic series for the ‘universal function’ of Weinstein (1969, 
appendix B). 

When m = 0, the mode does not spin: except for the special case of a plane 
wave propagating in the axial direction, each ray zig-zags in a meridional plane by 
successive reflections off the duct wall. The entire field is obtained from a typical 
ray (figure lg,h) by giving it every possible axial translation and rotation; thus the 
cylindrical caustic found earlier degenerates to a straight line, namely the duct axis, 
and the cones become flattened into ‘discs of infinite radius’, forming meridional 
planes. Hence the ray structure is similar to that of a two-dimensional parallel-plate 
duct (figure li,j). 

In previous work on sound radiation from aeroengine ducts, the problem has 
occasionally been simplified either by modelling the duct as two-dimensional (e.g. 
Candel 1973; Boyd et al. 1984), or by assuming that m24ka (Rice 1978). This 
inequality implies that the caustic radius is negligibly small, so that the rays lie 
approximately in meridional planes (figure lg,h). Comparison of figure l(a,b) with 
figure l(g,h) shows that the simplified models do not account correctly for the cones: 
they send diffracted rays in all polar directions, whereas models with correctly angled 
cones do not send rays into the quiet zones. Therefore the simplified models are not 
well-suited to determining the radiation from aeroengine ducts; and the same is true 
of the asymptotic results of Weinstein (1969) for two-dimensional ducts (pp. 161-166), 
for non-spinning modes (pp. 166-170), and in the m24ka limit (pp. 170-174). The 
great advantage of Debye’s approximation over the ‘large argument’ approximation 
m24ka  is that it respects the ray structure of the field. If diffraction theory is to be 
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FIGURE 4. Cargill’s meridional rays, and their diffraction at the end of the duct. (a) Hyperbolic 
arcs, incident and diffracted. ( b )  Hyperboloids generated either by rotation of (a), or by rotation of 
a piecewise linear helix. 

applied to noise shielding by ducts, the angle of the cones is the most important thing 
to get right. 

2.5. Cargill’s meridional rays 

A point of view emphasized by Cargill (1987, 1989) is that if a term e-i(wt-mb) is 
factored out of the pressure field, then ray theory may be applied directly to the 
resulting ‘meridional wave equation’ in the variables ( r ,  x), without extraction of a 
Bessel function. The propagation speed in this equation depends on r ,  so that the 
rays are refracted onto curved arcs and are reflected off the duct walls before being 
diffracted at the end of the duct (figure 4a). Axial translations of a ray produce a 
caustic at a certain radius. 

Cargill’s approach based on the meridional wave equation is entirely equivalent to 
the three-dimensional approach adopted in this paper. For example, the meridional 
rays are meridional projections of the piecewise linear helices found earlier, and so 
form arcs of hyperbolae; this may be shown algebraically, but it also follows from the 
‘ruled surface’ structure of a hyperboloid of one sheet (Hilbert & Cohn-Vossen 1952, 
figure 17), which shows that a hyperboloid may be generated from a pair of skew lines 
by rotating one of the lines about the other. The axial rotations of a meridional ray 
therefore produce the same surface as the axial rotations of a piecewise linear helical 
ray, namely the ‘fish-net’ shown in figure 4(b). Silent zones in a three-dimensional 
homogeneous medium correspond to geometrical shadow zones in a two-dimensional 
layered medium (Brekhovskikh 1980, figure 54.1); a ring source at the end of the 
duct (figure 4b) corresponds to a point source in a meridional plane (figure 4a). The 
smooth helices forming the rays in the inner cylinder in the three-dimensional theory 
project meridionally onto straight lines parallel to the duct axis in a meridional plane. 
Although a meridional theory of duct acoustics would be entirely tractable, using 
the armoury of techniques described by Brekhovskikh (1980), it seems easier to work 
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with straight lines and a uniform sound speed in three dimensions than hyperbolae 
and a non-uniform sound speed in two. 

3. Conclusions and further work 
The ray structure obtained in this paper establishes that the sound field radiated 

from the end of a cylindrical duct is similar to that radiated from a curved edge when 
it is struck by an incoming acoustic field. The curved edge in question is the rim 
of the end-face of the duct and the incoming acoustic field is a sum of infinite-duct 
modes. Except when the frequency of the incoming field is too low, the edge produces 
Keller cones of diffracted rays. Accurate numerical approximation to the the radiated 
field may therefore be obtained by the standard asymptotic techniques of Keller’s 
geometrical theory of diffraction: the basic ingedient in this theory is the diffraction 
coefficient obtained from the exact solution of a ‘canonical problem’ with similar 
local geometry. Application of this technique to the cylindrical duct problem will 
require a moderate, but not excessive, amount of algebraic calculation, in which two 
familiar difficulties will need to be overcome. The first is that the canonical diffraction 
coefficients, when calculated in the most straightforward way, are singular in certain 
‘caustic’ directions; the field in the neighbourhood of these directions requires a more 
complicated, but well-understood, uniform analysis. The second difficulty is that 
multiple reflections may, in certain directions, give the radiated field as a sum of 
terms which decay rather slowly; in these directions, comparison with the asymptotic 
limit of the Wiener-Hopf solution would be desirable. The asymptotic limit requires 
Weinstein’s ‘universal function’; the relation of this function to multiply-reflected rays 
is discussed in Bowman, Senior & Uslenghi (1987, pp. 46, 47). 

More generally, a detailed comparison of the Keller- theory far-field radiation in 
all directions with that obtained from the Weiner-Hopf solution would be of great 
interest. Because of the curvature of the duct rim, the Keller cones have an envelope; 
this envelope, a caustic of the rays, extends from near the rim outwards to the far 
field and also backwards inside the duct. Comparison of the Keller and Wiener-Hopf 
results would therefore provide a check of the accuracy of Keller’s method in a 
situation of non-trivial caustic geometry; the comparison would also determine when 
higher-order terms would be useful, or even essential, in the ray expansion of the 
field in inverse powers of the wavenumber. It would also be of interest to compare 
the far-field directivities obtained from both the Keller and Wiener-Hopf methods 
with those obtained from Kirchhoff’s approximation (see the references in $1); the 
numerical evidence in Weinstein (1969) suggests that in many directions a suitable 
version of Kirchhoff’s approximation would give excellent accuracy. The appeal of 
Kirchhoff’s approximation in day-to-day engineering calculations is so great that one 
would often wish to use it right up to the limit of its range of validity. The results 
from all three methods could also be compared with those obtained from full-scale 
numerical computation (Myers & Lan 1993). 

Realistic modelling of aeroengine ducts requires the incorporation of several effects 
not included in the simple model analysed in this paper. Effects which may readily 
be modelled by the Keller ray theory include (a)  mean flow; ( b )  diffraction at bell- 
mouthed and scarfed inlets (Cargill 1989) ; (c) diffraction of the rearward propagating 
acoustic field in the duct when this field reaches the exhaust nozzle (Cargill 1982); 
and (d )  arbitrary impedance of the duct lining (Rawlins 1978). Extension to cut-off 
modes is also feasible. For a complete prediction scheme, the theory needs to be 
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FIGURE 5. Bessel functions Jm(z)  and Ym(z) for m = 0,1,4,24: - , exact; - - - , Debye approximation. 
The approximations are singular at the caustic value z = m. Note that the range z > 0 in graph (a), 
for rn = 0, corresponds to just the right-hand sides z > m of graphs (b)-(d), for m = 1,4,24; hence 
the shapes of all the graphs are similar. 

combined with a model of the sources of sound in the duct; this problem is tackled 
in the sequel, Part 2 (Chapman 1995). 

This work has been carried out with the support of the DTI (CARAD) through 
the Defence Research Agency, Pyestock. The author is grateful to A.B. Parry, S.J. 
Perkins, and other members of the aeroacoustics group at Rolls-Royce, Derby, for 
their comments and assistance at all stages of the project. 

Appendix 
Figure 5 consists of graphs of the Bessel functions Jm(z) and Ym(z), and their Debye 

approximations, for m = 0,1,4,24. The remarkable feature of these graphs is their 
almost identical shape: for any m, the approximation fails only in the last ‘quarter 
wavelength’, of order m1I3, on either side of the caustic value z = m. Further details 
of the matching of Debye’s approximation with an Airy function expression may be 
found in Crighton & Parry (1992). To obtain Debye’s approximation for m = 0, it 
is necessary to put p = n/2 - m / z  in the expressions for fm(m sec p)  and Ym(m sec 8) 
given in Abramowitz & Stegun (1965, §9.3.3), and let m + 0; the result is the 
large-argument, fixed-order ‘Hankel type’ asymptotic form for m = 0 (Abramowitz & 
Stegun 1965, $5 9.2.1,9.2.2). Thus Debye’s approximation and Hankel’s approximation 
are identical for m = 0. 
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